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Summary

This article addresses a novel technique for the simultaneous design of a robust
nonlinear controller and static anti-windup compensator (AWC) for uncertain
nonlinear systems under actuator saturation and exogenous 2 bounded input.
The system is presumed to have locally Lipschitz nonlinearities, time-varying
uncertainties (appearing both in the linear as well as nonlinear dynamics
and both in the state in addition to the output equations), and external
norm-bounded inputs both in the state and the output equations. Several bilin-
ear matrix inequality–based conditions are derived to simultaneously design
the robust nonlinear controller and AWC gains for uncertain nonlinear sys-
tems by employing the Lyapunov functional, reformulated Lipschitz property,
uncertainty bounds, linear parameter-varying approach, modified local and
global sector conditions, iterative linear matrix inequality algorithm, convex
optimization procedure, and 2 gain minimization. The proposed multiobjec-
tive AWC-based dynamic robust nonlinear controller guarantees the mitigation
of saturation effects, robustness against time-varying parametric norm-bounded
uncertainties, the asymptotic stability of the closed-loop nonlinear system under
zero external disturbances, and the attenuation of disturbance effects under
nonzero external disturbances. The effectiveness of the proposed AWC-based
dynamic robust nonlinear controller synthesis scheme is illustrated by simula-
tion examples.

KEYWORDS

anti-windup compensator, dynamic robust nonlinear controller, input saturation, linear
parameter-varying technique, uncertain nonlinear systems

1 INTRODUCTION

The synthesis of multiobjective robust controllers for uncertain nonlinear systems has become an increasingly challenging
task as requirements and specifications for controller designs have become more rigorous. Standard tools and methods are
available to design a robust linear controller for linear systems; however, all physical systems are subjected to operational
constraints induced by technological, physical, or even security considerations. These constraints are mostly associ-
ated with the amplitude limitation of the input actuators. Therefore, a controller design without consideration of these
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constraints may lead to objectionable or even terrible process performance, such as loss of stability. In most cases,
accurately dimensioned actuators saturate even under usual operating conditions because of, for example, perturba-
tions, disturbances, load variations, and set-point changes. Under actuator saturation, the controller cannot provide the
pre-specified design performances. The closed-loop system may progress to some undesired operating conditions with the
possibility that, when the actuator saturation finishes, it may not return to the ordinary operating condition. Actuator sat-
uration is a limitation of practical systems because actuators cannot transmit an unconstrained energy signal, producing
saturation or windup effects.1-7

Integral windup compensation methods are broadly classified into two types. The first method is the two-step method-
ology, in which a dynamic controller is tuned without considering actuator saturation effects, and then, an additional
anti-windup compensator (AWC) is augmented in the closed-loop control system to mitigate the windup effects. This
approach occupies a noteworthy portion of the literature.2-4 However, this technique is often criticized owing to its con-
servatism and poor closed-loop performance. To achieve the improved closed-loop performance and stability, a second
method, called the one-step approach, is employed, which simultaneously designs the controller and AWC to attain the
desired response. In this approach, the information of saturation nonlinearity is directly included in the synthesis of a
multiobjective controller. The multiobjective controller is responsible for tracking, robustness, and windup effect com-
pensation. This methodology usually leads to a better closed-loop performance against input saturation (see, for example,
other works7-10); however, the derivation of the design conditions in this case is a highly challenging task due to the
computation of several control and anti-windup gains.

Anti-windup compensation for linear systems is a well-established subject. Both the one-step9,10 and two-step
approaches3 have been widely studied to compensate the saturation effects in stable and unstable linear and nonlin-
ear control systems. Numerous techniques and tools are available for designing AWCs for linear control systems along
with successful applications to laboratory setups, such as a disk drive,11 ball-and-beam system,12 and wireless networks.13

Recently, many researchers have shown an active interest in designing AWCs for nonlinear systems, and many design
methodologies are proposed in the literature. We can refer, for example, to the AWC design for Euler-Lagrange nonlinear
systems,14 feedback-linearizable nonlinear systems,15 dynamic inversion-based nonlinear systems,16 Lipschitz nonlin-
ear plants,2,4 rational nonlinear systems,5,17 uncertain nonlinear systems,18 Lur'e nonlinear models,19 Takagi-Sugeno
systems,20 and nonlinear time-delay prototypes.3 Most recently, anti-windup designs for linear parameter-varying (LPV)
systems were proposed.21-23 Morabito et al14 proposed a method of constructing an AWC for Euler-Lagrange nonlinear
systems, which ensures the global asymptotic and local exponential stabilization of saturated closed-loop systems. A
dynamic AWC for feedback-linearizable nonlinear systems is presented in the work of Yoon et al15 as an extension of
the work of Park and Choi.24 The approach of Herrmann et al16 generalized the AWC framework25,26 to the case of satu-
rated feedback-linearizable nonlinear affine systems controlled by employing nonlinear dynamic inversion (NDI) control
methodologies. In the work of Rehan and Hong,2 linear matrix inequality (LMI)–based local and global dynamic AWC
designs are proposed for Lipschitz nonlinear systems. Meanwhile, in the work of Hussain et al,4 the results of the work of
Rehan and Hong2 were extended for exponential synthesis and an2 exponentially stable regional AWC for nonlinear sys-
tems. The one-step approach-based simultaneous design of a dynamic controller and an AWC for nonlinear systems with
Lipschitz nonlinearity and actuator saturation was investigated by Rehan et al.8 Wang et al17 investigated both dynamic
and static AWC schemes for rational nonlinear systems using linear-fractional representation, while da Silva et al5 sug-
gested a static AWC design for multivariable rational nonlinear systems by means of differential algebraic representation.
An LMI-based framework is proposed to synthesize the output feedback controller for Lur'e nonlinear systems19 and
Takagi-Sugeno systems20 based on Lyapunov theory and the modified sector condition. The controller design problem for
switched and sampling systems was investigated in the works of Ma et al27 and Yang et al,28 respectively. The technique
in the work of Hussain and Rehan3 proposes AWC synthesis for constrained nonlinear time-delay systems by employing
a delay-range-dependent methodology. Furthermore, an internal model control–based AWC and decoupled and equiv-
alent decoupled-based anti-windup compensation architectures were schematized for Lipschitz nonlinear time-delay
systems.

Over the past decade, the control community has paid close attention to a specific type of nonlinear system called the
Lipschitz nonlinear system (see the works of Rehan et al2-4,8 and the references therein). However, the Lipschitz condition
does not represent the unique characteristics of nonlinear systems and may cause conservatism. The controller or AWC
synthesis based on the conventional Lipschitz condition can lead to infeasible results for larger Lipschitz constants. Most
recently, this conservatism has been removed by introducing the reformulated Lipschitz condition.7,29 This reformulated
Lipschitz condition using the LPV approach represents all attributes of the nonlinear systems. To the best of the authors'
knowledge, an LPV-based simultaneous design of a robust nonlinear controller and an AWC for nonlinear systems with
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time-varying parametric uncertainties, actuator saturation, and exogenous inputs has not been studied in the previous
works.

In light of the aforementioned literature, this research is dedicated to the simultaneous design of a robust nonlin-
ear controller and an AWC for uncertain locally Lipschitz nonlinear systems under actuator saturation nonlinearity and
exogenous 2 bounded inputs. By using Lyapunov stability, Lipschitz reformulation, the local region of interest, uncer-
tainty bounds, LPV theory, global and local sector conditions, the iterative LMI (ILMI) algorithm, the convex optimization
procedure, and 2 gain minimization, several bilinear matrix inequality (BMI) conditions are derived to find a nonlin-
ear controller and static AWC gains. The proposed AWC-based dynamic nonlinear controller ensures the mitigation of
saturation effects, robustness against time-varying parametric norm-bounded uncertainties, and stability of the overall
closed-loop system. The key contributions of this study are summarized as follows.

(1) A novel technique for the simultaneous design of the robust nonlinear controller and AWC for uncertain nonlinear
systems under actuator saturation, parametric uncertainty, and exogenous 2 inputs is proposed for the first time
to the best of our knowledge.

(2) The multiobjective robust nonlinear controller is designed by considering the less conservative LPV-based formu-
lation of the locally Lipschitz nonlinearities.

(3) Parametric uncertainties (in the linear as well as nonlinear parts) are considered for a comprehensive design
framework in contrast to the existing techniques.

(4) An approach for finding the controller and static AWC gain matrices by employing the recursive convex procedures
is suggested.

The efficiency of the proposed methodology is verified via simulation examples of a nonlinear system and a one-link
flexible robot.

The remaining section of this paper is organized as follows. Section 2 formulates the system and the proposed
AWC-based dynamic nonlinear controller description and presents preliminary results. In Section 3, the proposed AWC
synthesis is developed and BMIs are derived to obtain the nonlinear controller and AWC gain matrices. Section 4 gives
the application results. Finally, concluding remarks are provided in Section 5.

Notation. Standard notations are used throughout this article. For any real matrix X ∈ℜn × n, XT and X−1 signify the
transpose and inverse of X, respectively. For any symmetric matrix S = ST, S > 0 and S ≥ 0 represent the positive
definite and positive semidefinite matrices, respectively. He{M} = M + MT. Ω(𝜇P) = {x(t) | xT(t)P ≤ 1} represents an
ellipsoidal region. For any two vectors z(t) = (z1(t), z2(t),… , zn(t))T and z (t) = (z1 (t) , z2 (t) ,…, zn (t))T , an augmented
vector obtained by the combination of z(t) and z (t) can be represented as zzi(t) (t) = (z,1 (t) ,…, zi (t) , zi+1 (t) ,…, zn (t))T .
Correspondingly, we can characterize z0i (t) = (0,…, 0, zi+1, (t) ,…, zn (t))T . The symbols ||w(t)|| and ||w(t)||2 signify the
Euclidian norm and 2 norm of w(t). The identity matrix is indicated by I. diag{x1(t), x2(t),… ,xn(t)} indicates a block
diagonal matrix. The input saturation nonlinearity, for the control input u(t) ∈ Rm, is indicated by 𝒩sat (u (t)).

2 SYSTEM DESCRIPTION

Considering the state-space realization of uncertain nonlinear systems given by

.x (t) = ⌢Ap (t) x (t) + 𝑓p (t, x) + Δ𝑓p (t, x) + Bpu𝒩sat (uc (t)) + Bpww (t) ,

𝑦 (t) = ⌢
C𝑦 (t) x (t) + 𝑓𝑦 (t, x) + Δ𝑓𝑦 (t, x) + Dyww (t) ,

z (t) = ⌢
Cz (t) x (t) + 𝑓z (t, x) + Δ𝑓z (t, x) + Dzu𝒩sat (uc (t)) + Dzww (t) ,

(1)

where x(t) ∈ℜn
, uc(t) ∈ℜm

, 𝒩sat (uc (t)) ∈ ℜm, y(t) ∈ℜq, z(t) ∈ℜs, and w(t) ∈ℜl represent the plant states, unsaturated
control inputs, saturated control inputs, measured and performance outputs, and external inputs (which may contain a
reference, disturbance, noise, etc), respectively. The nonlinear vector functions are denoted as fp(t, x) = Bpf f (t, x) ∈ ℜn,
fy(t, x) = Dyf f (t, x) ∈ ℜq, and fz(t, x) = Dz f f (t, x) ∈ℜs, and the uncertain nonlinear vector functions are represented by
Δfp(t, x) = ΔBpf (t) f (t, x) ∈ ℜn, Δfy(t, x) = ΔDyf (t) f (t, x) ∈ ℜq, and Δfz(t, x) = ΔDz f (t) f (t, x) ∈ ℜt. The system matrices
are ⌢Ap (t) = (Ap + ΔAp (t)) ∈ ℜn×n, ⌢C𝑦 (t) = (C𝑦 + ΔCy(t)) ∈ ℜp × n, and ⌢

Cz (t) = (Cz + ΔCz (t)) ∈ ℜt×n, where Ap, Bpu,
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Cy, Cz, Dzu, Bpw, Dyw, and Dzw are known constant matrices and ΔAp(t), ΔCy(t), ΔCz(t), ΔBpf (t), ΔDyf (t), and ΔDz f (t) are
unknown matrices containing the time-varying uncertain parameters. The uncertainties satisfy⎡⎢⎢⎣

ΔAp (t) ΔBpf (t)
ΔC𝑦 (t) ΔDyf (t)
ΔCz (t) ΔDz𝑓 (t)

⎤⎥⎥⎦ =
⎡⎢⎢⎣

Mpa Mpf

Myc Myf

Mzc Mz𝑓

⎤⎥⎥⎦F (t)N, (2)

where Mpa, Myc, Mzc, Mpf, Myf, Mz f, and N are the known constant matrices of suitable dimensions. The matrix F(t) is
unknown time varying for all t > 0 and fulfills

FT (t)F (t) ≤ I. (3)
Consider a robust nonlinear controller, along with the static AWC, represented by

.xc (t) = Acxc (t) + 𝑓bc (t, x) + Bcy𝑦 (t) + E1𝜁z (uc (t)) ,
uc (t) = Ccxc (t) + 𝑓dc (t, x) + Dcy𝑦 (t) + E2𝜁z (uc (t)) ,

(4)

where xc(t) ∈ℜn, uc(t) ∈ℜm, and 𝜁 z(uc(t)) ∈ℜm indicate the controller states, unsaturated control inputs, and dead-zone
function, respectively. The vector functions fbc(t, x)= Bbcf f (t, x)∈ℜn and fdc(t, x)= Ddcf f (t, x)∈ℜn indicate the nonlinear
dynamics of the controller. The controller matrices Ac, Bbcf, Bcy, Cc, Ddcf, and Dcy and the static AWC matrices E1 and E2
need to be designed to provide the desired closed-loop performance and compensation against saturation effects.

Assumption 1. The exogenous input w(t) is 2 bounded; that is, we have

𝜆−1 ‖w (t)‖2
2 ≤ 1. (5)

Exogenous input w(t) can include the measurement noise and/or the disturbance input. The energy bound
on the exogenous input is generally ubiquitous and unknown. In most control design problems, the exogenous
input is taken as bounded for each time instant during the plant operation time, which is bounded. In particu-
lar, in optimization-based design methods (H∞ control, the linear-quadratic regulator, 2 gain minimization, and
linear-quadratic-Gaussian control, etc), we need to assume that the defined system inputs are bounded (for example,
by norm or stochastic characteristics). An unbounded input or disturbance can drive the system away from the desired
operation point. In the 2 gain minimization, the energy from input to output in the closed-loop system is minimized.
When one input has unbounded energy, the norm will not make sense anymore because it can result in infinite out-
put energy; otherwise, an unbounded control action is (theoretically) needed for dealing with an unbounded input.
In either case, the boundedness assumption on the input or disturbance is a practical step for realizing a control
formulation problem.

Assumption 2. For any x (t) , x (t) ∈ B𝑓 , where Bf = {x(t) | |xT(t)| ≤ 𝜅h} for h = 1, 2, 3,… , n, the nonlinear function
f (t, x) with scalar 𝜅f satisfies ‖‖𝑓 (t, x) − 𝑓 (t, x))‖‖ ≤ 𝜅𝑓

‖‖‖(x (t) − x (t)
)‖‖‖ . (6)

Note that Assumption 2 considered herein assumes that the nonlinear dynamics is locally Lipschitz rather than the
conservative global Lipschitz condition. The Lipschitz nonlinear function in (6) can be reformulated as follows (see
the works of Wang et al7 and Zemouche and Boutayeb29 for details):

𝑓(t, x) − 𝑓
(

t, x
)
=

r∑
i=1

n∑
𝑗=1

𝑓i𝑗
(

en (i) eT
n (𝑗)

) (
x (t) − x (t)

)
,

∀x (t) , x (t) ∈ B𝑓 ⊆ Rn,∀Θ𝑓 ∈ 𝑓 ,

(7)

where the function fij : Rn × Rn → R (for all i = 1, 2,… ,r, and j = 1, 2,… ,n) with the bound 𝜆
𝑓i𝑗

≤ 𝑓i𝑗 ≤ 𝜆𝑓i𝑗 is defined as

𝑓i𝑗 =
⎧⎪⎨⎪⎩

0, if x𝑗 = x𝑗 ,
𝑓i

(
xx𝑗−1

)
−𝑓i

(
xx𝑗

)
x𝑗−x𝑗

, if x𝑗 ≠ x𝑗 ,
(8)

where 𝜆
𝑓i𝑗

and 𝜆𝑓i𝑗 represent the lower and upper bounds, respectively. For f (0, x) = 0, the nonlinear function f (t, x)
can be symbolized as

𝑓 (t, x) =
r∑

i=1

n∑
𝑗=1

𝑓i𝑗
(

en (i) eT
n (𝑗)

)
x (t) , (9)
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𝑓i𝑗 =
⎧⎪⎨⎪⎩

0, if x𝑗 = 0,
𝑓i(x0𝑗−1 )−𝑓i(x0𝑗 )

x𝑗
, if x𝑗 ≠ 0.

(10)

By defining Θ𝑓 =
∑r

i=1
∑n
𝑗=1 𝑓i𝑗(en (i) eT

n (𝑗)), we obtain f (t, x) = Θf x(t). Since the function fij is bounded, the matrix
Θf belongs to a restricted convex set 𝑓 with the vertices set specified as

𝑓
=
{
Ψ𝑓 ∈ Rn×n |Ψ𝑓

i𝑗 ∈
{
𝜆
𝑓i𝑗
𝜆𝑓i𝑗

}}
. (11)

The subsequent system matrices are defined as

A =
[

Ap + BuDcyC𝑦 BuCc

BcyC𝑦 Ac

]
, Bpf =

[
Bpf + BuDcyDyf

BcyDyf

]
,

ΔA (t) =
[
ΔAp (t) + BuDcyΔC𝑦 (t) 0

BcyΔC𝑦 (t) 0

]
, ΔBpf (t) =

[
ΔBpf (t) + BuDcyΔDyf (t)

BcyΔDyf (t)

]
,

B𝜁z =
[

0 Bu

Im 0

]
, Bw =

[
Bw + BuDcyDyw

BcyDyw

]
, Bu =

[
−BT

u 0
]T
, I𝑛𝜃 =

[
𝜃In 0

]
,

Inc =
[

0 Inc
]T
, E =

[
ET

1 ET
2
]T
, Cz =

[
Cz + DzuDcyC𝑦 DzuCc

]
,

Dz𝑓 =
(

Dz𝑓 + DzuDcyDyf
)
, ΔCz (t) =

[
ΔCz (t) + DzuDcyΔC𝑦 (t) 0

]
,

ΔDz𝑓 (t) =
(
ΔDz𝑓 (t) + DzuDcyΔDyf (t)

)
, Im =

[
0 Im

]
,

Dw =
[
Dzw + DzuDcyDyw

]
, Cc =

[
DcyC𝑦 Cc

]
, Dcy = DcyDyf,

ΔCc (t) =
[

DcyΔC𝑦 (t) 0
]
, ΔDcy (t) = DcyΔDyf.

(12)

Taking 𝜒 (t) = [x (t) xc (t)]T as an augmented state vector, the closed-loop nonlinear system attained by connecting
the nonlinear system (1) and controller (2) is given by

.
𝜒 (t) =

(
Ã
(
Θ𝑓

)
+ ΔÃ

(
Θ𝑓 , t

))
𝜒 (t) + B̃𝜁z𝜁z (un (t)) + B̃ww (t) ,

z (t) =
(

C̃z
(
Θ𝑓

)
+ ΔC̃z

(
Θ𝑓 , t

))
𝜒 (t) + D̃𝜁z𝜁z (un (t)) + D̃ww (t) ,

uc (t) =
(

C̃c
(
Θ𝑓

)
+ ΔC̃c

(
Θ𝑓 , t

))
𝜒 (t) + ImE𝜁z (un (t)) +

⌢Ducww (t) ,

(13)

where
Ã
(
Θ𝑓

)
= A + BpfI𝑛𝜃 − BuDdcfI𝑛𝜃 + IncBbcfI𝑛𝜃, B̃w = Bw,

ΔÃ
(
Θ𝑓 , t

)
= ΔA (t) + ΔBpf (t) I𝑛𝜃, B̃𝜁z = B𝜁z E + Bu,

C̃z
(
Θ𝑓

)
= Cz + Dz𝑓 I𝑛𝜃 + DzuDdcfI𝑛𝜃, D̃w = Dw,

ΔC̃z
(
Θ𝑓 , t

)
= ΔCz (t) + ΔDz𝑓 (t) I𝑛𝜃, D̃𝜁z =

(
DzuImE − Dzu

)
,

C̃c
(
Θ𝑓

)
= Cc + DcyI𝑛𝜃 + DdcfI𝑛𝜃,

⌢Ducw = DcyDyw,

ΔC̃c
(
Θ𝑓 , t

)
= ΔCc (t) + ΔDcy (t) I𝑛𝜃.

(14)

LPV theory is an extension of gain-scheduling techniques. In gain-scheduling methods, several linear time-invariant
controllers are designed for a parameterized family of linearized models. This technique leads to reasonable results
if the variations of the parameters are adequately slow. The reformulated Lipschitz property provides an alternate
approach to transform the nonlinear systems into LPV systems, in which the system matrix is affine in a parametric
form. The proposed LPV technique requires 2n2 LMIs to be solved for the n-dimensional nonlinear state vector. It
should be noted that the LPV approach provides less restrictive design conditions than the conventional methods by
employing the bounds on the nonlinear functions.

Our objective is to propose a novel method for the simultaneous design of dynamic controller matrices Ac, Bbc, Bcy,
Cc, Ddc, and Dcy and the static AWC matrices E1 and E2 for saturated locally Lipschitz systems such that undesirable
saturation effects can be reduced and the predefined H∞ performance ||z(t)|| < 𝛾||w(t)||is simultaneously ascertained.
Subsequently, we reference some beneficial lemmas that will be used later in the derivation of our results.
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Lemma 1 (See the works of Wang et al,30 Abbaszadeh and Marquez,31 and Zhang et al32).
Consider vectors x (t) ∈ ℜn and 𝑦 (t) ∈ ℜn, and for any positive definite matrix P∈ℜn × n, the following inequality holds:

2xT (t) 𝑦 (t) ≤ xT (t)Px (t) + 𝑦T (t)P−1𝑦 (t) . (15)

Lemma 2 (See other works30-34).
For vectors x (t) , 𝑦 (t) ∈ ℜn, any positive scalar 𝜀, and any real matrices S, D, and F(t) of suitable dimensions, with F(t)
satisfying I − FT(t)F(t) ≥ 0, the following inequality holds:

2xT (t)DF (t) S 𝑦 (t) ≤ 𝜀−1xT (t)DDTx (t) + 𝜀𝑦 (t) STS 𝑦 (t) . (16)

Lemma 3 (See other works30-34).
Presuming any real matrices A, B, C, P, and F(t) of suitable dimensions with P > 0 and F(t) satisfying I − FT(t)F(t) ≥ 0,
if P−1 − 𝜀−1BBT > 0 for any positive scalar 𝜀, we obtain

(A + BF (t)C)TP (A + BF (t)C) ≤ AT(P−1 − 𝜀−1BBT)−1A + 𝜀CTC. (17)

Lemma 4 (See the work of Abbaszadeh33 and page 301 in the work of Horn and Johnson35).
For any positive definite invertible matrix P, we have‖In − P‖ = 𝜎max (In − P) < 1, (18)

where 𝜎max is the maximum singular value of P.

3 AWC SYNTHESIS

To design a regional static AWC, consider an auxiliary region given as

S1 (𝛿 (t) ,u (t)) =
{

u (t) , 𝛿 (t) ∈ ℜm; −v ≤ u (t) − 𝛿 (t) ≤ v
}
, (19)

where

𝛿 (t) =
(

C̃c
(
Θ𝑓

)
− H

(
Θ𝑓

))
𝜒 (t) + ImE𝜁z (un (t)) +

⌢Ducww (t) ,
H(Θ𝑓 ) = [H1(Θ𝑓 ) H2(Θ𝑓 )]. Here, 𝛿(t) is an auxiliary vector and v is the upper limit on saturation nonlinearity. The
dead-zone function satisfies the local sector condition (see the works of Rehan et al2-4,8 and the references therein). The
inequality

𝜁z(u (t))TW
[
𝛿 (t) − 𝜁z (u (t))

] ≥ 0 (20)
holds true if (19) is fulfilled.

Now, we provide an inequality-based treatment for the given matrices of the robust nonlinear dynamic controller
(Ac, Bbcf, Bcy, Cc, Ddcf, Dcy) and static AWC gain matrices (E1, E2), which guarantee the mitigation of saturation effects,
robustness against time-varying parametric norm-bounded uncertainties, and asymptotic stability of the closed-loop
system.

Theorem 1. Under Assumptions 1 and 2, consider the uncertain nonlinear systems (1) with actuator satura-
tion and exogenous 2 bounded input. For the given parameters of the robust nonlinear dynamic controller
(Ac, Bbcf, Bcy, Cc, Ddcf, Dcy) and static AWC gain matrices (E1, E2), suppose there exist scalars 𝛾 > 0, 𝜀1 > 0, 𝜀2 > 0, and
𝜇 > 0, matrices P1 = PT

1 > 0 ∈ ℜn×n,P2 = PT
2 > 0 ∈ ℜn×n, W1 = W T

1 > 0 ∈ ℜn×n, W2 = W T
2 > 0 ∈ ℜn×n, Γ4 ∈ℜm × r,

Γ5 ∈ ℜm × n, Γ6(Θ) ∈ ℜn × m, and M2 ∈ ℜm × m, and a diagonal matrix S > 0 ∈ ℜm × m, such that the following matrix
inequalities are fulfilled for all Θ𝑓 ∈ 𝑓 :

𝜎max (In − P) < In, (21)[
In M̃2

𝜀2I

]
> 0, (22)
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[
P

(
𝜏(h)0

)T

∗ 𝜇𝜅2
(h)

]
≥ 0, for h = 1, 2, 3,…,n, (23)

[
P C̃T

c
(
Θ𝑓

)
− HT (

Θ𝑓

)
∗ 𝜇v2

(k)

]
≥ 0, for k = 1, 2, 3,…,m, (24)

Ξ(1)
1 =

[
Ξ(1)

11 Ξ(1)
12

∗ Ξ(1)
22

]
< 0, (25)

where

Ξ(1)
11 =

⎡⎢⎢⎣
Π11 Π12 PB̃w
∗ Π22 WDcyDyw
∗ ∗ −I

⎤⎥⎥⎦ ,
Ξ(1)

12 =
⎡⎢⎢⎢⎣

C̃T
z
(
Θ𝑓

)
0 PM̃1 0 0 HT (

Θ𝑓

)
M̃3 𝜀3ÑT

0 0 0 D̃T
𝜁z

0 0 0

0 0 0 0 D̃T
w 0 0

⎤⎥⎥⎥⎦ ,

Ξ(1)
22 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
3

I M̃2 0 0 0 0 0
∗ −3𝜀1𝛾𝐼 0 0 0 0 0
∗ ∗ −𝜀1𝛾

−1I 0 0 0 0
∗ ∗ ∗ − 1

3
𝛾𝐼 0 0 0

∗ ∗ ∗ ∗ − 1
3
𝛾𝐼 0 0

∗ ∗ ∗ ∗ ∗ −𝜀3I 0
∗ ∗ ∗ ∗ ∗ ∗ −𝜀3I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Π11 = He
{

PÃ
(
Θ𝑓

)}
+ (𝜀1 + 3𝜀2) ÑTÑ,

Π12 = PB̃𝜁z + HT (
Θ𝑓

)
W ,

Π22 = −2W + WImE + E
T

ImW .

Then, the robust nonlinear controller along with the static AWC guarantees the following.

(1) The closed-loop system's state trajectories are asymptotically stable for all initial conditions belonging to the region
Ω(𝜇P) if w(t) = 0.

(2) The 2 gain from w(t) to z(t) is less than 𝛾 if w(t) ≠ 0.
(3) All the state trajectories of the closed-loop nonlinear system remain within the ellipsoidal region 𝜒T(t)𝜇P𝜒(t) < 1, for

all t > 0.

Proof. A Lyapunov functional candidate is chosen specified by

V (𝜒, t) = 𝜒T (t)P𝜒 (t) . (26)

Consider the objective function

J (𝜒, t) =
.

V (𝜒, t) − wT (t)w (t) + 𝛾−1zT (t) z (t) < 0. (27)

Integrating (11) from 0 to T, for T →∞, yields

T

∫
0

J (𝜒, t) dt = V (𝜒,T) − V (𝜒, 0) −

T

∫
0

wT (t)w (t) dt + 𝛾−1

T

∫
0

zT (t) z (t) dt < 0. (28)

If 𝜒(0) = 0, then we obtain V(𝜒 , 0) = 0. As V(𝜒 , T) > 0, (28) implies that ‖z (t)‖2
2 < 𝛾 ‖w (t)‖2

2. If 𝜒(0) ≠ 0, then
V(𝜒 , 0) ≠ 0, and (28) indicates that ‖z (t)‖2

2 < 𝛾 ‖w (t)‖2
2 + 𝛾V (𝜒, 0). The dead-zone nonlinearity satisfies sector
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condition (20). Therefore, (27) can be written as

J (𝜒, t) ≤ 2𝜒T (t)
(

Ã
(
Θ𝑓

)
+ ΔÃ

(
Θ𝑓 , t

))
P𝜒 (t) + 𝜁z(u (t))TB̃T

𝜁z
P𝜒 (t) + wT (t) B̃T

wP𝜒 (t)

+ 𝜁T
z (un (t)) D̃T

𝜁z
𝛾−1D̃𝜁z𝜁z (un (t)) + 2𝜁T

z (un (t)) D̃T
𝜁z
𝛾−1D̃ww (t) + wT (t) D̃T

w𝛾
−1D̃ww (t)

+ 𝜒T (t)PB̃𝜁z𝜁z (un (t)) + 𝜒T (t)PB̃ww (t) − wT (t)w (t) + 𝜒T (t)
(

C̃z
(
Θ𝑓

)
+ ΔC̃z

(
Θ𝑓 , t

)) T𝛾−1 (C̃z
(
Θ𝑓

)
+ ΔC̃z

(
Θ𝑓 , t

))
𝜒 (t) + 2𝜒T (t)

(
C̃z

(
Θ𝑓

)
+ ΔC̃z

(
Θ𝑓 , t

))
𝛾−1D̃𝜁z𝜁z (un (t)) + 2𝜒T (t)

(
C̃z

(
Θ𝑓

)
+ ΔC̃z

(
Θ𝑓 , t

))
𝛾−1D̃ww (t)

+ 2𝜁z(u (t))TW
[
𝛿 (t) − 𝜁z (u (t))

]
< 0.

(29)

From Equations (2), we can select

ΔÃ(Θ𝑓 , t) = M̃1F̃(t)Ñ, ΔC̃z(Θ𝑓 , t) = M̃2F̃(t)Ñ, ΔC̃c(Θ𝑓 , t) = M̃3F̃ (t) Ñ, (30)

M̃1 =
[
MΔA MΔB

]
, F̃ (t) =

[
F (t) 0

0 F (t)

]
, Ñ =

[
N

NI𝑛𝜃

]
,

MΔA =
[

Mpa + BpuDcyMyc 0
BcyMyc 0

]
, F (t) =

[
F (t) 0

0 F (t)

]
,

N =
[

N 0
0 N

]
, MΔB =

[
Mpf + BpuDcyMyf

BcyMyf

]
,

M̃2 =
[
MΔCz MΔDzf

]
, MΔCz =

[
Mzc + DzuDcyMyc 0

]
,

MΔDzf = (Mz𝑓 + DzuDcyMz𝑓 ), ΔC̃c(Θ𝑓 , t) = M̃3F̃ (t) Ñ,

M̃3 =
[
MΔCy MΔDcy

]
, MΔCy =

[
DcyMyc 0

]
, MΔDcy = DcyMyf.

(31)

By employing Lemmas 1 to 3, we obtain

2𝜒T(t)(Ã(Θ𝑓 ) + M̃1F̃ (t) Ñ)P𝜒 (t) ≤ 2𝜒T(t)Ã(Θ𝑓 )P𝜒(t) + 𝜀1𝜒
T (t) ÑTÑ𝜒 (t)

+ 𝜀−1
1 𝜒T (t)PM̃1M̃T

1 P𝜒(t),
(32)

(
C̃z(Θ𝑓 ) + M̃2F̃ (t) Ñ

)T
𝛾−1 (C̃z(Θ𝑓 ) + M̃2F̃(t)Ñ

) ≤ C̃T
z (Θ𝑓 )

(
I − 𝜀−1

2 M̃2M̃T
2
)−1C̃z(Θ𝑓 ) + 𝜀2ÑTÑ, (33)

2𝜒T(t)
(

C̃z(Θ𝑓 ) + M̃2F̃(t)Ñ
)T
𝛾−1D̃𝜁z𝜁z (un (t)) ≤ 𝜒T(t)

(
C̃z(Θ𝑓 ) + M̃2F̃(t)Ñ

)T
𝛾−1 (C̃z(Θ𝑓 ) + M̃2F̃(t)Ñ

)
𝜒 (t)

+ 𝜁T
z (un (t)) D̃T

𝜁z
𝛾−1D̃𝜁z𝜁z (un (t)) ,

(34)

2𝜒T(t)
(

C̃z(Θ𝑓 ) + M̃2F̃(t)Ñ
)T
𝛾−1D̃ww (t) ≤ 𝜒T(t)

(
C̃z(Θ𝑓 ) + M̃2F̃(t)Ñ

)T
𝛾−1(C̃z(Θ𝑓 ) + M̃2F̃ (t) Ñ

)
𝜒(t)

+ wT(t)D̃T
w𝛾

−1D̃ww(t),
(35)

2𝜁T
z (un(t)) D̃T

𝜁z
𝛾−1D̃ww(t) ≤ 𝜁T

z (un(t)) D̃T
𝜁z
𝛾−1D̃𝜁z𝜁z (un(t)) + wT(t)D̃T

w𝛾
−1D̃ww(t), (36)

2𝜒T(t)
(

H(Θ𝑓 ) + M̃3F̃(t)Ñ
)
W𝜁z (u(t)) ≤ 2𝜒T(t)H(Θ𝑓 )W𝜁z (u (t)) + 𝜀3𝜒

T(t)ÑTÑ𝜁z (u (t))
+ 𝜀−1

3 𝜒T(t)HT(Θ𝑓 )M̃1M̃T
1 H(Θ𝑓 )𝜁z (u (t)) .

(37)

Finally, by using (32)-(36) in (29), we attain

J (𝜒, t) = 2𝜒T(t)Ã(Θ𝑓 )P𝜒(t) + (𝜀1 + 3𝜀2)𝜒T(t)ÑTÑ𝜒(t) + 𝜀−1
1 𝜒T(t)PM̃1M̃T

1 P𝜒(t)

3𝜒T(t)C̃T
z (Θ𝑓 )

(
I − 𝜀−1

2 M̃2M̃T
2
)−1C̃z(Θ𝑓 )𝜒(t) + 3𝜁T

z (un (t)) D̃T
𝜁z
𝛾−1D̃𝜁z𝜁z (un (t))

2𝜒T (t)PB̃𝜁z𝜁z (un(t)) + 2𝜒T(t)PB̃ww (t) − wT(t)w(t)
+ 3wT (t) D̃T

w𝛾
−1D̃ww (t) + 2𝜁z(u (t))TW

[
𝛿(t) − 𝜁z (u (t))

]
< 0.

(38)
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Employing the Schur complement to (38) and using (37) yield

J (𝜒, t) = ℑT(t)Ξ1ℑ (t) < 0, (39)

ℑT(t) =
[
𝜒(t) 𝜁z(u(t)) w(t)

]
, (40)

Ξ1 =
⎡⎢⎢⎣
Π11 Π12 PB̃w
∗ Π22 WDcyDyw
∗ ∗ −I + 3D̃T

w𝛾
−1D̃w

⎤⎥⎥⎦ , (41)

Π11 = PÃ(Θ𝑓 ) + ÃT(Θ𝑓 )P + 𝜀1ÑTÑ + 𝜀−1
1 PM̃1M̃T

1 P

+ 3C̃T
z (Θ𝑓 )

(
I − 𝜀−1

2 M̃2M̃T
2
)−1C̃z(Θ𝑓 ) + 3𝜀2ÑTÑ,

Π12 = PB̃𝜁z + HT(Θ𝑓 )W + 𝜀3NTN + 𝜀−1
3 HT(Θ𝑓 )M̃3M̃T

3 H(Θ𝑓 ),

Π22 = −2W + WImE + E
T

ImW + 3D̃T
𝜁z
𝛾−1D̃𝜁z .

(42)

By using the Schur complement to (41), we gain (25). Inequality (21) is necessary to ensure the positive def-
initeness and inevitability of matrix P. Inequality (22) is obligatory for Lemma 3. Condition (23) is attained by
including Ω(𝜇P) = 𝜒T(t)𝜇P𝜒(t) < 1 in S2(𝜅h) = {𝜒(t)|𝜒(t) |h ≤ (𝜅h 0)}, for h = 1, 2, 3,… , n. Similarly, by including
Ω(𝜇P) = 𝜒T(t)𝜇P𝜒(t) < 1 in S1(𝛿(t)u(t)) = {𝜒 (t) ‖C̃c(Θ𝑓 ) − H(Θ𝑓 )‖𝜒(t)k ≤ vk}, where k = 1, 2, 3,… , m, we attain
the matrix inequality (24). Both (23) and (24) are required in our design approach. Condition (23) is useful for deal-
ing with locally Lipschitz systems rather than the simple form of globally Lipschitz systems. Condition (24) is used to
guarantee a local region of stability.

Remark 1. Many controller design schemes for nonlinear systems have been proposed in the literature.36-38 However,
most of the controller design techniques are based on the assumption that manipulating the control signal operates
in the linear region. These controllers may provide significant closed-loop stability and performance in the absence of
input saturation. However, a real-world transducer cannot transport an unrestricted energy signal, consequently caus-
ing actuator saturation, which leads to performance degradation and instability (see the works of da Silva et al5 and
Ran et al18). The core objective of this article is to propose a multiobjective AWC-based dynamic robust nonlinear con-
troller. The dynamic robust nonlinear controller provides robustness against time-varying parametric norm-bounded
uncertainties, the asymptotic stability of the closed-loop system under zero external disturbances, and the attenuation
of disturbance effects under nonzero external disturbances. Meanwhile, the static AWC guarantees the mitigation of
saturation effects by using the difference between the saturated and unsaturated manipulated control signals.

Remark 2. Numerous controller and AWC design schemes for nonlinear systems are presented in the literature.2-5,7,8,36

However, a generalized technique for the simultaneous design of a robust nonlinear controller and static AWC for
uncertain nonlinear systems under actuator saturation and exogenous 2 bounded input has not been completely
addressed. In comparison with the conventional design approaches, there are many attributes of the anticipated mul-
tiobjective AWC-based dynamic robust nonlinear controller. For example, the present design approach is based on
the LPV reformulation property of Lipschitz nonlinear functions compared with the works of Rehan et al.2-4 Further-
more, parametric uncertainties are considered in the present work to design a robust nonlinear controller and AWC.
Moreover, nonlinearities have been considered in the state in addition to the output equations of a plant. In addition,
external perturbations have been considered in the state along with the output equations of a plant.

Remark 3. The proposed AWC-based robust nonlinear controller synthesis methodology possesses unique features
in contrast to the existing techniques of AWC design2-4,8 due to the application of the generalized and less conserva-
tive Lipschitz nonlinearity condition. In contrast to the conventional Lipschitz schemes,2-4 we used the LPV-based
reformulation Lipschitz technique7,29 to design a robust nonlinear controller and static AWC for uncertain nonlin-
ear systems. In comparison with the conventional Lipschitz condition, the reformulated Lipschitz condition can be
used to synthesize a less conservative controller and AWC for nonlinear control systems. The LPV technique permits
the effective treatment of the nonlinear function with large Lipschitz parameters by employing the nonlinear part of
the plant for different state values. The conventional Lipschitz properties2,3,8 do not characterize the unique charac-
teristics of nonlinear dynamics, whereas the reformulation Lipschitz condition reveals the true representation of the
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nonlinear function and is the premium one that contains all the characteristics of the nonlinear dynamics. The refor-
mulation Lipschitz property has not been hitherto employed for the simultaneous design of a nonlinear controller
and static AWC for uncertain nonlinear systems.

The results of Theorem 1 can be reduced to the case of the nonlinear system with ΔÃ(Θ𝑓 , t) = 0, ΔC̃z(Θ𝑓 , t) = 0,
and C̃c(Θ𝑓 ,Δ, t) = 0 in (1), as observed in the work of Wang et al.7 The corresponding result is provided as follows.

Corollary 1. Under Assumptions 1 and 2, consider the uncertain nonlinear systems (1) withΔÃ(Θ𝑓 , t) = 0,ΔC̃z(Θ𝑓 , t) =
0, and C̃c(Θ𝑓 ,Δ, t) = 0 under actuator saturation and exogenous 2 bounded inputs. The robust nonlinear controller
along with the static AWC can be designed if there exist a scalar, 𝛾 > 0, matrices P1 = PT

1 > 0 ∈ ℜn×n,P2 = PT
2 > 0 ∈ ℜn×n,

W1 = W T
1 > 0 ∈ ℜn×n, W2 = W T

2 > 0 ∈ ℜn×n, Γ1 ∈ ℜn × n, Γ2 ∈ ℜn × q, Γ3 ∈ ℜn × r, Γ4 ∈ ℜm × r, Γ5 ∈ ℜm × n,
Γ6(Θ) ∈ℜn × m, Γ7 ∈ℜn × m, Dcy ∈ℜn × n, and M2 ∈ℜm × m, and a diagonal matrix S > 0 ∈ℜm × m, such that conditions
(21)-(24) and the following matrix inequality are fulfilled for all Θ𝑓 ∈ 𝑓 :

Ξ∗1
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Π
∗1
11 𝜓12 𝜓13 𝜓14 𝜓15

∗ Π
∗1
22 𝜓23 𝜓24 𝜓25

∗ ∗ 𝜓33 DcyDyw Π
∗1T
35

∗ ∗ ∗ −I Π
∗1T
45

∗ ∗ ∗ ∗ −𝛾𝐼

⎤⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (43)

Π
∗1
11 = He

{
ApW1 + BuΓ5 + Bpf ΘInW1 + BuΓ4ΘInW1

}
,

Π
∗1
22 = He

{
P1Ap + Γ2C𝑦 + Γ3ΘIn

}
, Π

∗1
35 = (DzuQ2 − DzuS) ,

Π
∗1
45 =

(
Dzw + DzuDcyDyw

)
.

(44)

Then, the robust nonlinear controller along with the static AWC (4) guarantees the following.

(1) The closed-loop system state trajectories are asymptotically stable for all initial conditions belonging to the region
Ω(𝜇P) if w(t) = 0.

(2) The 2 gain from w(t) to z(t) is less than 𝛾 if w(t) ≠ 0.
(3) All the state trajectories of the closed-loop system remain bounded within the ellipsoidal region 𝜒(t)T𝜇P𝜒(t) < 1, for

all t > 0.

Remark 4. The suggested approach in Theorem 1 considers the conventional schemes7 as a specific case by ignoring
parametric uncertainties. It is notable that the effect of parametric uncertainties has been rarely addressed in the
AWC or AWC-based controller design of nonlinear systems. The present approach in Theorem 1 considers parametric
uncertainties in both the linear and nonlinear components of the plant. The consideration of parametric uncertainties
in both components, for designing several controller and AWC gains, is a nontrivial research problem. Moreover,
AWC-based control for locally Lipschitz nonlinear systems has not been thoroughly considered in the previous studies,
as observed in the work of Wang et al.7

Now, we present a BMI-based methodology for determining the gains of robust nonlinear dynamic controller
matrixes (Ac, Bbcf, Bcy, Cc, Ddcf, Dcy) and static AWC gain matrices (E1, E2).

Theorem 2. Under Assumptions 1 and 2, consider the uncertain nonlinear systems (1) with actuator saturation non-
linearity and exogenous 2 bounded inputs. The robust nonlinear controller along with the static AWC can be designed
if there exist scalars 𝛾 > 0, 𝜀1 > 0, 𝜀2 > 0, and 𝜇 > 0, matrices P1 = PT

1 > 0 ∈ ℜn×n, P2 = PT
2 > 0 ∈ ℜn×n,

W1 = W T
1 > 0 ∈ ℜn×n, W2 = W T

2 > 0 ∈ ℜn×n,Γ1 ∈ ℜn×n, Γ2 ∈ ℜn × q, Γ3 ∈ ℜn × r, Γ4 ∈ ℜm × r, Γ5 ∈ ℜm × n,
Γ6(Θ)∈ℜn × m,Γ7 ∈ℜn × m, Dcy ∈ℜm × q, and Q2 ∈ℜm × m, and a diagonal matrix S> 0∈ℜm × m, such that the following
matrix inequalities are fulfilled for all Θ𝑓 ∈ 𝑓 :[

In In − PT

∗ In

]
> 0, (45)

⎡⎢⎢⎢⎣
W1 I 𝜏(h)W T

1
∗ P1 𝜏(h)I
∗ ∗ 𝜇𝜅2

(h)

⎤⎥⎥⎥⎦ ≥ 0, for h = 1, 2, 3,…,n, (46)
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⎡⎢⎢⎢⎣
W1 I 𝜓∗T

13(k)
∗ P1 𝜓∗T

23(k)
∗ ∗ 𝜇v2

(k)

⎤⎥⎥⎥⎦ ≥ 0, for k = 1, 2, 3,…,m, (47)

⎡⎢⎢⎢⎣
𝜀2I Mzc + DzuDcyMcy 0 Mz𝑓 + DzuDcyMz𝑓
∗ I 0 0
∗ ∗ I 0
∗ ∗ ∗ I

⎤⎥⎥⎥⎦ > 0, (48)

Ξ(2)
1 =

[
Ξ(2)

11 Ξ(2)
12

∗ Ξ(2)
22

]
< 0, (49)

Ξ(2)
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝜓11 𝜓12 𝜓13 𝜓14 𝜓15 0 0 0
∗ 𝜓22 𝜓23 𝜓24 𝜓25 0 0 0
∗ ∗ 𝜓33 DcyDyw 0 0 0 0
∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ 𝛾𝜓55 𝜓56 0 𝜓58
∗ ∗ ∗ ∗ ∗ 3𝛾−1𝜓99 0 0
∗ ∗ ∗ ∗ ∗ ∗ 3𝛾−1𝜓99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 3𝛾−1𝜓99

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Ξ(2)
12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓19 0 𝜓1(11) 0 0 𝜓1(14) 0 𝜓1(16) 𝜀3NT 0 𝜀3(NΘI)T

𝜓29 0 𝜓2(11) 0 0 𝜓2(14) 0 𝜓2(16) 0 𝜀3NT 0
0 0 0 𝜓T

3(12) 0 0 0 0 0 0 0
0 0 0 0 𝜓T

4(13) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ξ(2)
22 == diag {𝜓99, 𝜓99, 𝜓99, 𝛾𝜓55, 𝛾𝜓55,−𝜀3I,−𝜀3I,−𝜀3I,−𝜀3I,−𝜀3I,−𝜀3I} ,

𝜓∗
13 = Γ4ΘW1 + Γ5 − ΓT

6 , 𝜓
∗
23 = DcyC𝑦 + Γ4Θ − H1,

𝜓11 = He
{

ApW1 + BuΓ5 + BpfΘInW1 + BuΓ4ΘInW1
}

+ (𝜀1 + 3𝜀2)(NTN + (NΘI)T (NΘI)),
𝜓12 = Ap + BuDcyC𝑦 + ΓT

1 + BpfΘ + BuΓ4Θ + (Γ3ΘW1)T ,

𝜓13 = BuQ2 − BuS + Γ6, 𝜓14 = Bw + BuDcyDyw,

𝜓15 = (CzW1 + DzuΓ5)T + W1ΘT(Dz𝑓 + DzuΓ4)T ,

𝜓19 = PT
1 MpA + PT

1 BpuCcyMyc + P2BcyMyc,

𝜓1(11) = PT
1 Mpf + PT

1 BpuDcyMyf + P2BcyMyf,

𝜓1(14) = HT
1k(Θ)DcyMyc, 𝜓2(14) = HT

2k(Θ)DcyMyc,

𝜓1(16) = HT
1k(Θ)DcyMyf, 𝜓2(16) = HT

2k(Θ)DcyMyf,

𝜓22 = He
{

P1Ap + Γ2C𝑦 + Γ3ΘIn
}
+ (𝜀1 + 3𝜀2) (NTN),

𝜓23 = Γ7 + HT
1 (Θ), 𝜓24 = P1Bw + Γ2Dyw,

𝜓25 = (Cz + DzuDcyC𝑦)T + Θ(Dz𝑓 + DzuΓ4)T ,

𝜓29 = PT
2 MpA + PT

2 BpuCcyMyc + P1BcyMyc,

𝜓2(11) = PT
2 Mpf + PT

2 BpuDcyMyf + P1BcyMyf,

𝜓33 = −2S + He {Q2} , 𝜓3(12) = (DzuQ2 − DzuS) ,
𝜓3(13) = (Dzw + DzuDcyDyw), 𝜓4(13) = (Dzw + DzuDcyDyw)T ,

𝜓56 = Mzc + DzuDcyMcy, 𝜓58 = Mz𝑓 + DzuDcyMz𝑓 ,

𝜓55 = −1
3

I, 𝜓99 = −𝜀1I.

(50)
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Then, the robust nonlinear controller along with the static AWC (4) guarantees the following.

(1) The closed-loop system state trajectories are asymptotically stable for all initial conditions belonging to the region
Ω(𝜇P) if w(t) = 0.

(2) The 2 gain from w(t) to z(t) is less than 𝛾 if w(t) ≠ 0.
(3) All the state trajectories of the closed-loop system remain bounded within the ellipsoidal region 𝜒T(t)𝜇P𝜒(t) < 1, for

all t > 0.

Moreover, the robust nonlinear controller and the static AWC gain matrices can be constructed by

Ac = P−1
2

(
Γ1 − P1ApW1 − P1BuΓ5 − P2BcyC𝑦W1

)
W−T

2 ,

Bbcf = P−1
2

(
Γ3 − P1Bpf − Γ2Dyf − P1BuDdcf

)
,E2 = Q2S−1,

Bcy = P−1
2

(
Γ2 − P1BuDcy

)
, Cc =

(
Γ5 − DcyC𝑦W1

)
W−T

2 ,

Ddcf =
(
Γ4 − DcyDyf

)
, E1 = P−1

2 (Γ7 − P1BuQ2 + P1BuS) S−1.

(51)

Proof. The following matrices are selected:

P =
[

P1 P2
PT

2 PT
1

]
, ℵ =

[
W1 W2
W T

2 W T
1

]
, and ℵ =

[
W1 W2
In 0

]
. (52)

By pre- and post-multiplying inequality (25) in Theorem 1 by the diagonal matrix diag(ℵ, S, I, I, I, I, I, I, I, I) and using
the change in variables

Γ1 =
(

P1ApW1 + P1BuΓ5 + P2BcyC𝑦W1 + P2AcW T
2
)
,

Γ2 =
(

P1BuDcy + P2Bcy
)
,

Γ3 =
(

P1Bpf + Γ2Dyf + P1BuDdcf + P2Bbcf
)
,

Γ4 =
(

DcyDyf + Ddcf
)
,

Γ5 =
(

DcyC𝑦W1 + CcW T
2
)
,

Γ6 =
(

W1H1(Θ)T + W2H2(Θ)T) ,
Γ7 = (P1BuQ2 − P1BuS + P2InQ1) ,

W−1 = S,Q1 = E1S,Q2 = E2S,

(53)

we obtain the BMI (49). The LMIs (45), (46), and (47) are obtained by employing the Schur complement to (21), (23),
and (24), respectively. The LMI (48) is attained from (22). This completes the proof of Theorem 1.

Remark 5. In comparison to Theorem 1, Theorem 2 provides a BMI-based methodology for determining the values
of robust nonlinear dynamic controller matrices (Ac, Bbcf, Bcy, Cc, Ddcf, Dcy) and static AWC gain matrices (E1, E2). It
may be challenging to design the controller and AWC from the constraints of Theorem 1 because the tuning efforts
are obligatory for finding appropriate controller and AWC gains. However, the inequalities in Theorem 2 can be
solved directly for the calculation controller and AWC gains by employing the ILMI algorithm, convex optimization
procedure, 2 gain minimization, and cone complementary linearization technique.

Remark 6. Conditions (46) and (47) indicate that (I − P1W1) > 0. As inequality (45) guarantees the nonsingularity
of the matrix P, there always exist nonsingular matrices P2 and W2 such that P2W T

2 = (I − P1W1). Therefore, for the
sake of simplicity, one can select any nonsingular value for matrix W2, such as W2 = In, and the matrix P2 can then
be calculated as P2 = (I − P1W1) (W T

2 )
−1. By employing a change in the variable as P2 = X2, P2 = X2, P2 = P−1

2 , and
X2 = X−1

2 , the inequalities in Theorem 2 can be solved via convex routines with the following objective function and
additional constraints:

trace
(

P2X2 + P2X2 + X2X2 + P20X2 + P2X20 + P20X2 + P2X20 + X2X20

)
(54)
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subject to [
X2 I
I X2

]
≥ 0,

[
X2 I
I P2

]
≥ 0. (55)

Remark 7. The constraints in Theorem 2 are expressed in BMI form due to the presence of the nonlinear terms
Γ3ΘInW1 and Γ4ΘInW1. Two methods can be used to obtain the optimal solution. First, the ILMI optimization tech-
nique proposed in the work of Peaucelle and Arzelier39 can be used to determine the values of robust nonlinear
dynamic controller matrices and static AWC gains. Secondly, the BMI condition in Theorem 2 can be converted to
an LMI by taking Γ3 = 0 and Γ4 = 0. However, under this condition, conservatism is introduced in the condition of
Theorem 2, which cannot be ignored to obtain LMIs.

By using the approaches suggested in Remarks 6 and 7, the constraints in Theorem 2 can be resolved using convex
routines through the iterative solution of LMIs and optimization of the nonlinear objective function. In Corollary 2,
we derive a BMI-based global technique for the simultaneous design of a robust nonlinear controller and AWC for
uncertain nonlinear systems under actuator saturation and exogenous 2 bounded disturbances by employing the
global sector condition.2

Corollary 2. Under Assumptions 1 and 2, consider the uncertain nonlinear systems (1) with actuator saturation and
exogenous 2 bounded inputs. The robust nonlinear controller along with the static AWC can be designed if there exist
scalars 𝛾 > 0, 𝜀1 > 0, 𝜀2 > 0, 𝜇 > 0, matrices P1 = PT

1 > 0 ∈ ℜn×n,P2 = PT
2 > 0 ∈ ℜn×n, W1 = W T

1 > 0 ∈ ℜn×n,

W2 = W T
2 > 0 ∈ ℜn×n, Γ1 ∈ ℜn × n, Γ2 ∈ ℜn × q, Γ3 ∈ ℜn × r, Γ4 ∈ ℜm × r, Γ5 ∈ ℜm × n, Γ6(Θ) ∈ ℜn × m, Γ7 ∈ ℜn × m,

Dcy ∈ℜn × n, and M2 ∈ℜm × m, and a diagonal matrix S> 0∈ℜm × m, such that the following matrix inequality is fulfilled
for all Θ𝑓 ∈ 𝑓 :

Ξ∗2
1 =

[
Ξ∗2

11 Ξ(2)
12

∗ Ξ(2)
22

]
< 0,

Ξ∗2
11 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜓11 𝜓12 𝜓∗2
13 𝜓14 𝜓15 0 0 0

∗ 𝜓22 𝜓∗2
23 𝜓24 𝜓25 0 0 0

∗ ∗ 𝜓33 DcyDyw 0 0 0 0
∗ ∗ ∗ −I 0 0 0 0
∗ ∗ ∗ ∗ 𝛾𝜓55 𝜓56 0 𝜓58
∗ ∗ ∗ ∗ ∗ 3𝛾−1𝜓99 0 0
∗ ∗ ∗ ∗ ∗ ∗ 3𝛾−1𝜓99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 3𝛾−1𝜓99

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

𝜓∗2
13 = BuQ2 − BuS + W1

(
DcyC𝑦 + Γ4ΘI

)T + W2CT
c ,

𝜓∗2
23 = Γ7 +

(
DcyC𝑦 + Γ4ΘI

)T
.

(56)

Then, the robust nonlinear dynamic controller along with the static AWC (4) guarantees the following.

(1) The closed-loop system state trajectories are asymptotically stable for all initial conditions belonging to the region
Ω(𝜇P) if w(t) = 0.

(2) The 2 gain from w(t) to z(t) is less than 𝛾 if w(t) ≠ 0.

Remark 8. Theorem 2 provides an inequality-based local static AWC-based robust nonlinear dynamic controller
design schema. The constraints in Theorem 1 can be employed to design the robust controller and AWC for stable
and unstable uncertain nonlinear systems. If a nonlinear system is globally asymptomatically stable and satisfies the
globally Lipschitz condition, the novel condition provided in Corollary 2 can be used for the simultaneous design
of a robust nonlinear controller and AWC for uncertain nonlinear systems under actuator saturation and exogenous
2 bounded disturbances. A similar condition for the globally Lipschitz nonlinear systems can also be derived from
Theorem 2 as a special case.

4 SIMULATION RESULTS

Two simulation examples are provided in this section to demonstrate the effectiveness of the proposed AWC-based
dynamic robust nonlinear controller design schemes.
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Example 1. Consider the nonlinear system18 given by

.x1 (t) = x2 (t) ,

.x2 (t) = − 1
24

(x1 (t) − x2 (t)) +
1

12

(
sin

(x1

2

)
cos

(x3

3

)
+ cos

(x1

3

)
sin

(x2

2

))
+ 3𝒩sat (uc (t)) ,

𝑦 (t) = x1 (t) .

(57)

The saturation level is taken as 𝜐 = ±1. For 𝜅f = 0.0833, the nonlinear dynamics satisfies the Lipschitz condition
globally. Our goal is to compute the static AWC gain matrices E1 and E2 to achieve a region of stability, x(t)T𝜇P1x(x)< 1,
for all t > 0 that is as large as possible. By solving Theorem 2 for the optimization problem, we attain

P1 =
[

0.0024 −0.0022
−0.0022 0.0026

]
, E1 =

[
0.0027
0.0026

]
, E2 = 0.5, 𝛾 = 0.167. (58)

An important objective of the simultaneous design of the robust nonlinear controller and AWC is the enlargement of
the region of attraction (ROA) of the closed-loop system. To achieve a large estimate of the ROA, we need to minimize
trace (P1). For this purpose, we considered the subsequent optimization problem5 given by

min trace (H1) ,
[

H1 I
I Q1

]
≥ 0, (45) – (49) , (59)

where H1 ≥ Q−1
1 = P1 is a positive definite matrix. The minimization of trace(H1) leads to the minimization of

trace(P1) and, consequently, an implicit maximization of the ellipsoidal region.
A comparative analysis of the ROA of the existing techniques, the active disturbance rejection control–based AWC,18

sector-based AWC,19 static AWC methodology,5 and proposed windup compensation-based control technique is shown
in Table 1. From the matrices P1 and their respective traces trace(P1), we can conclude that, in contrast to the existing
techniques, a significantly large estimate of the ellipsoidal basin of attraction is obtained with the proposed technique
in Theorem 2. The 2 gain minimization from w(t) to z(t) can be considered by solving the constraints (45)-(49) of
Theorem 2 for the optimization of 𝛾 . The optimal values of the 2 gain 𝛾 obtained from different techniques are shown
in Table 2. For comparison, estimates of the region of stability are shown in Figure 1, where R1 is the estimated ROA
by Theorem 2, R2 is the estimated ROA by da Silva et al,5 R3 is the estimated ROA by da Silva et al,19 and R4 is the
estimated ROA by Ran et al.18 In contrast to the existing approaches, the technique proposed in Theorem 2 has the
largest estimated ROA.

TABLE 1 Comparisons of the estimated basin of attraction for
different techniques for Example 1

Techniques P1 trace (P1)

Ran et al18
[

1.1554 0.3387
0.3387 0.5999

]
1.7553

da Silva et al19
[

0.2591 −0.0039
−0.0039 0.0207

]
0.2798

da Silva et al5
[

13.8747 −7.3119
−7.3119 339.5162

]
353.3909

Proposed method of Theorem 2
[

0.0024 −0.0022
−0.0022 0.0026

]
0.0050

TABLE 2 Comparisons of the performances for different
techniques for Example 1

𝟐 Gain Saqib et al23 Ran et al18 Theorem 2
Minimization

𝛾 0.190 × 104 0.6527 0.1670
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FIGURE 1 Comparison of estimated region of attraction of closed-loop nonlinear system [Colour figure can be viewed at
wileyonlinelibrary.com]

Example 2. Consider the following nonlinear one-link flexible robot40:
.xm (t) = xwm (t) ,

.xwm (t) = k
Jm

xL (t) −
k

Jm
xm (t) − B

Jm
xwm (t) + Ka

Jm
𝒩sat (u (t)) ,

.xL (t) = xwL (t) ,
.xwL (t) = − k

JL
xL (t) +

k
JL

xm (t) −
MgL

JL
sin (xL (t)) ,

(60)

where xm(t) is the angular position of the motor rotor, xL(t) represents the angular position of the link, .xm (t) symbolizes
the angular velocity of the motor rotor, and .xL (t) is the angular velocity of the link. Jm denotes the inertia of the
motor rotor, and JL signifies the inertia of the link. The details of the parameters (k, B, Ka, M, g, and 2L) are specified
in Table 3. The saturated controlled torque to the shaft is represented by 𝒩sat (u (t)). MgL

JL
sin (xL (t)) characterizes the

flexible joint nonlinearity. The position of the motor rotor xm(t) and angular velocity of link xwL(t) are considered as
outputs. Using the values of the parameters itemized in Table 1, the plant (57) can be characterized by

Ap =
⎡⎢⎢⎢⎣

0 1 0 0
−48.64 −12.43 48.68 0

0 0 0 1
19.35 0 −19.35 0

⎤⎥⎥⎥⎦ , Bpf =
⎡⎢⎢⎢⎣

0
0
0

−4.536

⎤⎥⎥⎥⎦ , Bpu =
⎡⎢⎢⎢⎣

0
1
0
0

⎤⎥⎥⎥⎦ ,
𝑓 (t, x) = sin (xL (t)) , C𝑦 =

[
1 0 0 0
0 1 0 0

]
, Cz = −

[
1 0 0 0
0 1 0 0

]
.

(61)

TABLE 3 Nonlinear one-link flexible robot parameters

Notation Parameters Value Units

Jm Motor inertia 0.0239 kgm2

JL Link inertia 5.650 kgm2

B Viscous friction coefficient 5.650 NmV−1

k Torsional spring constant 0.0029 Nm(rad)−1

Ka Amplifier gain 5.650 NmV−1

M Payload mass 5.650 kg
2L Link length 5.650 m
g Gravity acceleration 9.800 ms−2

http://wileyonlinelibrary.com
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It is significant to note that, due to wear-and-tear, high-frequency components, unmodeled dynamics, and environ-
mental changes, no real physical systems can be accurately modeled by mathematical equations. Therefore, a system
always contains model uncertainties.41 The uncertainty matrices are selected as

Mpa =

⎡⎢⎢⎢⎢⎢⎣

0 0.12 0 0
−0.51 0.20 0.81 0

0 0 0 0.21
0.35 0 −.53 0

⎤⎥⎥⎥⎥⎥⎦
, Myc =

[
0.12 0 0 0.1

]
,

Mzc =
[

0.12 0 0 0.1
]
, Mpf =

[
0 0 0 0.21

]T
, and N = 1.

(62)

The input and output disturbances are selected as

dp1 (t) = sin 100t, dp2 (t) =
[

0.03 sin 9t −0.02 sin 11t
]T
. (63)

The system matrices can be accounted for to solve the robust nonlinear controller and static AWC design. Note
that the nonlinear dynamics is globally Lipschitz, and the conventional approaches, such as those by Wang et al7 and
Rehan et al,8 fail to design a multiobjective controller for this case due to the presence of parametric uncertainties. To
design the proposed robust nonlinear controller with a static AWC (4), the controller matrices Ac, Bbcf, Bcy, Cc, Ddcf, and
Dcy and the static AWC matrices E1 and E2 are obtained by solving the constraints (45)-(49) of Theorem 2 using convex
routines. Saturation nonlinearity is ubiquitous in all control systems. In engineering systems, all physical actuators
are subject to saturation restriction because of its minimum and maximum bounds. The saturation limit 𝜐 = ±1 is
taken. By taking 𝜅f = 0.333, the following controller and static AWC gain matrices are obtained:

Ac = 102 ×
⎡⎢⎢⎢⎣
−17.04 90.64 1.11 −14.29
−3.68 19.09 0.152 −2.85
13.87 −74.79 −1.11 12.09
−1.56 7.89 0.020 −1.14

⎤⎥⎥⎥⎦ , Bbcf =
⎡⎢⎢⎢⎣

113.5517
25.2488

−141.0389
−10.4689

⎤⎥⎥⎥⎦ ,

Bcy =
⎡⎢⎢⎢⎣

2.97 −17.97
0.72 −3.77
−2.25 14.86
0.34 −1.56

⎤⎥⎥⎥⎦ , E1 =
⎡⎢⎢⎢⎣
−0.0316
−0.0085
−0.0239
−0.0037

⎤⎥⎥⎥⎦ , Ddcf = [0] , E2 = 0.5,

Cc =
[
−76.98 122.71 −53.97 55.51

]
, Dcy =

[
59.18 −13.31

]
.

The output response of the closed-loop uncertain nonlinear one-link flexible robotic system with the initial con-
dition

[
xm (0) xwm (0) xL (0) xwL (0)

]T =
[

0.5 1 3 0.8
]T is revealed in Figure 2. The closed-loop system response
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FIGURE 2 Convergence of trajectories of closed-loop uncertain nonlinear one-link flexible robotic system using the proposed method
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FIGURE 3 Saturated control signal response for uncertain nonlinear one-link flexible robotic system
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converges to a region in the neighborhood of the origin in the presence of saturation nonlinearity, parametric
norm-bounded uncertainties, and input and output disturbances, which validates the usefulness of the proposed
windup compensation-based control technique. Figure 3 shows the corresponding saturated control signal plot. The
control signal recovers within 1 second from the saturation nonlinearity and then converges in the presence of dis-
turbances. It shows the ability of the proposed control approach to recover from the windup phenomenon caused by
the saturation nonlinearity.

To check the performance of the proposed control strategy against saturation nonlinearity, we test our control sys-
tem under large initial conditions and more complex disturbance signal. The response of the closed-loop uncertain
nonlinear one-link flexible robotic system with a large initial condition (two times larger than the previous case)[

xm (0) xwm (0) xL (0) xwL (0)
]T =

[
1 2 6 1.6

]Tunder same external disturbances is demonstrated in Figure 4A. The
corresponding saturated control signal is depicted in Figure 4B. It has been observed that the stabilization of the
closed-loop response is guaranteed, without any input saturation effect. As can be observed from Figure 4A, the
closed-loop system responses of states converge in the presence of saturation nonlinearity, parametric norm-bounded
uncertainties, and external disturbance. The saturated control signal recovers from saturation around 1 second
and regulates states of the uncertain nonlinear plant. It further validates the effectiveness of the proposed windup
compensation-based control technique.
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FIGURE 5 Closed-loop response of uncertain nonlinear system under double initial condition and random disturbance of large
amplitude. A, Closed-loop state trajectories; B, Saturated control signal [Colour figure can be viewed at wileyonlinelibrary.com]
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Now, we investigate the closed-loop response and saturated control signal by considering large initial
conditions and more practical large random disturbance simultaneously. We select the initial condition as[

xm (0) xwm (0) xL (0) xwL (0)
]T =

[
1 2 6 1.6

]T and apply an external disturbance of a uniformly distributed random
signal belonging to [−3.5 3.5]. The resultant plots for closed-loop states and saturated control signal are provided
in Figure 5. It is observed from Figure 5A that the closed-loop system response converges in the neighborhood of
the origin in the presence of saturation nonlinearity with a saturation limit of 𝜐 = ±1, parametric norm-bounded
uncertainties, and large random external disturbance of a uniformly distributed random signal of magnitude ±3.5.
The saturated control signal is shown in Figure 5B, which recovers from the saturation and adjusts in accordance
with the random disturbance for controlling the uncertain nonlinear system. It again reveals that the proposed
windup compensation-based control technique is impregnable against saturation, uncertainties, and external distur-
bance because all the states converge and control signal recovers from saturation nonlinearity without generating the
windup effects.

5 CONCLUSIONS

A novel technique for the simultaneous design of a robust nonlinear controller and anti-windup compensation for uncer-
tain nonlinear systems with actuator saturation, parametric uncertainties, and exogenous 2 bounded disturbances has
been investigated in this study. The system considered in this paper is presumed to have locally Lipschitz nonlineari-
ties, time-varying uncertainties, and external norm-bounded disturbances. Several design conditions have been derived
to attain the AWC-based robust nonlinear controller for uncertain nonlinear systems by employing the Lyapunov func-
tional, reformulated Lipschitz property, uncertainty bounds, LPV theory, modified sector condition, convex optimization
procedure, and 2 gain minimization. The proposed conditions can be resolved by employing the ILMI optimization
procedure. The proposed multiobjective AWC-based dynamic robust nonlinear controller guarantees the mitigation of
saturation effects, robustness against time-varying parametric uncertainties, the asymptotic stability of the closed-loop
system under zero external disturbances, and the attenuation of disturbance effects under nonzero external disturbances.
Applications to a nonlinear system and an uncertain nonlinear one-link flexible robotic system verified the effectiveness
of the proposed AWC-based dynamic robust nonlinear control scheme.
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